a2 United States Patent

Fulton

US011289126B2

US 11,289,126 B2
Mar. 29, 2022

(10) Patent No.:
45) Date of Patent:

(54) APPARATUS AND METHOD FOR
EFFICIENT COLLABORATION AND
CHANGE MANAGEMENT OF A
NON-LINEAR EDITING PROCESS

(71)
(72)

")

Applicant: Curtis Fulton, Vashon, WA (US)
Inventor: Curtis Fulton, Vashon, WA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

@
(22)

Appl. No.: 17/477,204

Filed: Sep. 16, 2021

(65) Prior Publication Data

US 2022/0005507 Al Jan. 6, 2022

Int. CL.
G11B 27/031
GO6F 40/166
GO6F 40/197
U.S. CL
CPC

(51)
(2006.01)
(2020.01)
(2020.01)
(52)
G1IB 27/031 (2013.01); GOGF 40/166

(2020.01); GOGF 40/197 (2020.01)

(58) Field of Classification Search
CPC ittt GOG6F 40/166
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0250497 Al*
2014/0172787 Al*

9/2010 Redlich et al. ........ GOGF 17/30
6/2014 Greenberg et al. .........cccccoeeenne

GOGF 17/30327
2014/0331062 Al* 11/2014 Tewari et al. ........... GOGF 21/60

* cited by examiner
Primary Examiner — James ] Debrow

(57) ABSTRACT

A method of managing change to a non-linear editing
process is described. The method accesses a stored reference
edit decision list; generates a binary search tree using the
reference edit decision list; flattens the binary search tree to
generate a linked list that contains linked list data; and
generates text-based reference linked list data from the
linked list data.

20 Claims, 4 Drawing Sheets

Computer System fmg
Memo 7104
Content Timeline Editor System
Other
_ o ‘ Processor 4o0g Programs
Edit Decision List — .
Engine 11 124
— Collision Monitoring
Engine o4
Binary Search Tree 124 e 102
Engine 132 [
) RBEL and Other
Rinary Search Tree Video and Link d?f? ; Data _
Flattening CAufEOt mDe;ta s Repositories NOWE_J%&{ .
Engine 122 onten Editor .,
—
; Other VO Other Computer Metwork Network
Dispia etwor
ey ePy Devices Readable Media Cornections 128
0g Lio {112 C114 16
f 136
Client ““
Computing | |
Systems




US 11,289,126 B2

Sheet 1 of 4

Mar. 29, 2022

U.S. Patent

SWBIsAS
|| DBupndwod
Ll wenD

@Q\

el

)14

MIDAISN

e A040H
JBBUT-UON

w&\\

I PHY o o 204
SUOIOBULIOD | | eipsyy egepesy SHDIAS(]
MIOMIBN Jandwon a0 O JBUI0 Nda Aejdsig

s@L0sodey
lg

BUG

vel

stueibosd
BUIO

Zéi suibug
Buiuene) 4
s8] ynees Aeug

LSO
ooy

2R
18 pasl

pUE CaDIA

pue 1304

et
aubuz
a1 yoiesg Aruig

el
auBug

BULICHUOKY USISHIOD —

Ll
auifun

— 1817 uoisios(] ipd
Cl jpssa00ud

<o,

WeISAS JOUPT eS| UBILDY

4
0017 Riowaiy

%%\

wieisAg Jsindwion




U.S. Patent Mar. 29, 2022 Sheet 2 of 4 US 11,289,126 B2

206

[

Timeline f f;(}a
Track /
| i Clip ] iy

Empty .' Filled
Sample  Sample g%




US 11,289,126 B2

Sheet 3 of 4

NS

EEE Dy
Ehd R

|aia1amoo | | wiavd | {ggngaann

. -
£y ©
Fremane®

AACO3NILL

eow oox
ot g 0" aq
- >

Ca Y k4 *a, L L)
° -
) Pd AN 5 P - S
* 5 % 2 Y 3 LY S
) s S ¥ s )
6 L]
L L L/ . ﬂ
s
H H H M H 2 ] 1
2 H H 5 5 ° H 2
2 * 1 s 2 2
; s
£ A g [} B [ 5 5
1 % K ° h . 5 s
£ Y K LY & Y ) 0
i . o ,. x 5 J
?‘ e \Q 00
L ot 7 oo ® -

9 23

Mar. 29, 2022

U.S. Patent

©
o
~

5

PET
o

R TN g
o7

«
>

™ anER o
N - oy

-
©

o »
hL T Cenppne”

| 1v00iL0000 |

G000 LOCXD "NOLLYOOT
LANEAS




US 11,289,126 B2

Sheet 4 of 4

Mar. 29, 2022

U.S. Patent

v

LPQOLLOOX0

g

£2001 L00X0

LOOCL OO0

<

¥ o0
Lueoa g

LFO0LL0O0X0 8
€C00LLOOX0 ¢
LOOOLLOOXO €

mam:\\ﬂ




US 11,289,126 B2

1
APPARATUS AND METHOD FOR
EFFICIENT COLLABORATION AND
CHANGE MANAGEMENT OF A
NON-LINEAR EDITING PROCESS

BACKGROUND OF THE INVENTION

In the arts of preparing content, and in particular editing
a stream of media content during preparation for distribution
to content consumers, content editors may use a non-linear
editor (NLE) to make cut decisions on an audio and video
content timeline. A non-linear editor is specialized software
executed on a computing system (computer) that allows
generation of the content timeline using a pointer-based
system that identifies the memory storage location of pre-
viously generated and stored digitized video and audio
content.

During production, the video content is filmed and the
audio content is recorded. Typically, multiple scenes are
acquired, digitized and stored using one or more cameras
and microphones. The content that has been acquired, digi-
tized and stored for a particular scene are referred to herein
as content clips (video clip or audio clip). The content clips
are stored in a memory at a known location. Often, the
location in memory is identified by a file name that has been
specified for each of the stored content clips. Additionally,
each digitized sample of the stored content clips are iden-
tified by a time code (interchangeably referred to herein as
a time stamp) or suitable identifier that identifies the content
clip location within a scene.

During the post production process, using the non-linear
editor, selected portions of the content clips are sequentially
arranged to generate the media content. In practice, the
non-linear editor is configured to generate an edit decision
list (EDL). The edit decision list defines the content timeline
of the media content, from the start of the media content to
the end of the media content.

During the editing process, the content editor (the person
operating the non-linear editor computer/program) will
identify a particular content clip of interest, such as a scene
or part of the scene, that will be used to generate a portion
of the media content. The content editor will also identify a
location along the content timeline where the content clip
will be presented in the stream of the finalized media content
event.

With a non-linear editor, the content editor specifies the
memory location of the stored digitized content clip to the
non-linear editor and specifies the point where the content
clip is to go in the content timeline. For example, the content
editor may specify the file name given to the content clip and
a time code of the first frame of that content clip. The
non-linear editor software then adds the file name and time
code of the content clip into the edit decision list at the
specified point in the content timeline. The content editor’s
specification may also include a duration of the content clip.

Once the edit decision list has been completed for the
entire content timeline, the media content event can be
generated. The first entry in the edit decision list identifies
the beginning of the media content. Based on the specified
file name and time code, the first content clip is retrieved by
the non-linear editor and is stored as the first part of the
media content event. The next entry identifies the second
content clip, which is then retrieved and stored into the
media content as the second part of the media content event.
The process of retrieving and storing the sequence of content
clips continues until the end of the content timeline. Once

15

20

25

30

40

45

50

55

60

65

2

the last content clip has been retrieved and stored into the
media content event, generation of the media content event
has been completed.

The completed media content event is stored as media
content stream. The media content stream typically com-
prises a synchronized stream of video content, audio con-
tent, and other information of interest such as closed stream
captioning information and/or information describing attri-
butes pertaining to the media content. The video portion of
the media content, when decoded and presented on a display,
presents a series of sequentially presented still images which
are each presented for some predefined duration. By pre-
senting each image for a short duration, the sequentially
presentation of the series of images results in the perception
by a viewer of a motion picture (interchangeably referred to
herein as a video). The corresponding audio portion of the
media content is presented in synchronism with presentation
of the video such that the user hears sounds, such as actor
dialogue and/or music, while they are viewing the video
portion of the media content.

An advantage of using a non-linear editor during post
production is that during editing, any of the content clips can
be easily deleted, content clips can be moved to another
location in the content timeline, and/or other content clips
can be added into the content timeline by the editor oper-
ating the non-linear editor program. Such changes are made
on a real time basis by revising the edit decision list.

If multiple parties (editors) are concurrently working on a
shared edit decision list, collaboration among the editors can
be achieved via a lock workflow process. In the lock
workflow process, the edit decision list is locked for editing
by a designated single editor who is allowed to change the
edit decision list. Other editors are prevented from modify-
ing the edit decision list. Once the edit decision list has been
unlocked, the rest of the collaboration team of editors can
merge their changes into the unlocked edit decision list.

The lock workflow process has several problems. For
example, locking the edit decision list is arbitrary. If the edit
decision list has been locked by the designated editor, who
may be unreachable at sometimes, an artificial workflow
impediment is created because the other editors cannot
access the locked edit decision list. Locked edit decision lists
create a workflow bottleneck because the various editors
must take turns modifying the edit decision list. That is, the
various editors cannot blend their edit decision list changes
until the locked edit decision list is unlocked.

The non-linear workflow process still has several prob-
lems. For example, during a bare workflow process, if two
or more editors are working on the same portion of the edit
decision list, their changes may collide with each other. For
example, a first edit change may be made to a particular
portion of the edit decision list. Then, a later edit change may
be made to the same part of the edit decision list (by simply
over writing the first edit change). Accordingly, previous
edit changes may be lost.

Accordingly, there is a need in the arts to provide an
improved apparatus and method to enable concurrent non-
linear editing of content by a plurality of content editors.

SUMMARY

A method of managing change to a non-linear editing
process is described. The method accesses a stored reference
edit decision list; generates a binary search tree using the
reference edit decision list; flattens the binary search tree to



US 11,289,126 B2

3

generate a linked list that contains linked list data; and
generates text-based reference linked list data from the
linked list data.

BRIEF DESCRIPTION OF THE DRAWINGS

The components in the drawings are not necessarily to
scale relative to each other. Like reference numerals desig-
nate corresponding parts throughout the several views.

FIG. 1 is a block diagram of an embodiment of an
example content timeline editor system.

FIG. 2 conceptually illustrates an example content time-
line.

FIG. 3 conceptually illustrates an example plurality of
samples of a sample stream.

FIG. 4 conceptually illustrates an example search binary
tree.

FIG. 5 conceptually illustrates an example linked list that
is generated from the binary search tree.

FIG. 6 conceptually illustrates an example plurality of
computer files generated from linked list data.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of an embodiment of an
example content timeline editor system 100. The content
timeline editor system 100 is a component of, or works
cooperatively with, one or more non-linear editors 102. In an
example embodiment, the content timeline editor system
100 maintains a reference edit decision list (RDEL) that is
accessible in real time to a plurality of editors using their
respective non-linear editor 102. One skilled in the art
appreciates that the non-linear editor is software executing
on a computer 102. Accordingly, the terms non-linear editor
102 and computer 102 may be interchangeably used within
the context of this disclosure.

In the various embodiments, each content editor is able to
access the reference edit decision list to ascertain the current
state of the post production editing process. For example, the
content editor may retrieve and save the most current
reference edit decision list onto the memory of their com-
puter 102 or to a memory medium (memory) that is com-
municatively coupled to their computer 102. Each content
editor may, depending upon their current task and objec-
tives, make changes to the local edit decision list stored on
their computer 102. When the content editor is satisfied with
their current work, the content editor may then send the
revised edit decision list information with their changes that
they have made to the locally stored edit decision list from
their computer 102 to the content timeline editor system 100.
The new edit decision list information may be communi-
cated as an updated edit decision list. Alternatively, or
additionally, the portion of the local updated edit decision
list that the editor was working on may be communicated to
the content timeline editor system 100. In other embodi-
ments, changes to the local edit decision list may be com-
municated from the non-linear editor 102 to the content
timeline editor system 100 in different manners and in
different formats.

Alternatively, or additionally, a non-linear editor 102 that
has been provisioned with the content timeline editor system
100 can generate an updated binary search tree, described in
greater detail herein, based on the updated edit decision list.
Then, the non-linear editor 102 can generate additionally or
alternatively generate an updated linked list with updated
linked list data. The non-linear editor 102 can additionally or
alternatively then generate text-based updated reference

15

25

40

45

4

linked list data that is communicated to the managing
content timeline editor system 100 as an update.

Once the updated edit decision list information is received
at the content timeline editor system 100, the most current
reference edit decision list is optionally accessed for updat-
ing with the newly received updated edit decision list
information. The updated reference edit decision list is then
optionally re-stored by the content timeline editor system
100.

In some embodiments, supplemental information is stored
in the reference edit decision list and/or may be associated
with the reference edit decision list. For example, the date
and time that the most current reference edit decision list
was generated may be included in the supplemental infor-
mation. As another non-limiting example of supplemental
information, the name of the content editor and/or the
content timeline of their changes may be stored so that other
content editors may learn who made what changes, and what
portion of the edit decision list was changed by the identified
content editor. Any suitable information of interest may be
stored as supplemental information.

During the update process, the content timeline editor
system 100 checks for data collisions. A data collision
occurs when two different content editors, using their own
non-linear editor 102, make changes to the same portion of
the edit decision list. As another example, collisions may
happen when a content editor submits a change, but the
content editor was working from an old out-of-date version
of'the edit decision list. If their changes were made inside the
timecode range that the most recent changes were made, a
collision has occurred.

Further, the location of a collision within the edit decision
list can be identified very precisely. The nodes of each binary
search tree are associated with a particular time in the
content time line of the edit decision list. In response to
identifying the collision, embodiments of the content time-
line editor system 100 generate a collision report that
indicates the detection of the collision, wherein the collision
report indicates a precise time of the collision in the time
line, and optionally provide the colliding data to the content
editor

Content editors can address collisions by choosing to
override with their changes, keep the most recent change, or
rollback to the previous change. This worktflow allows any
number of content editors using a content timeline editor
system 100 embodiment to edit the same content timeline
without locking the content timeline. That is, content time-
lines can be branched, modified and merged by a plurality of
content editors who are concurrently editing the edit deci-
sion list using the content timeline editor system 100. The
entire history of the content timeline may be stored so any
content editor can go back to a historical version of the
content timeline. The conflict between the updated edit
decision list information must be resolved before a valid
current reference edit decision list can be generated. In some
situations, the editors submitting the changes are notified of
the collision. Alternatively, or additionally, a chief editor in
charge of the post production process may be notified of the
collision. Once the collision has been resolved by the
various content editors, a new reference edit decision list can
be generated by the content timeline editor system 100.

One skilled in the art appreciates that the task of managing
a content timeline defined by an edit decision list is exceed-
ingly complex and difficult. In particular, the digital data
sampling rates for video data and audio data are very high.
For example, the forty eight kilo hertz (48 k Hz). Accord-
ingly, there is an incredibly large amount of video and audio



US 11,289,126 B2

5

data that must be tracked with a high degree of precision
using a sample-level precision edit decision list which
makes the task complex and difficult for the content editors.
Even one second of a media content event may have
hundreds of thousands of pieces of data.

Embodiments of the content timeline editor system 100
manage the process of tracking the video and audio data
identified in the reference edit decision list with the requisite
degree of precision using a novel approach of representing
time line information within the reference edit decision list.
The novel approach is to represent information of an edit
decision list using a binary search tree. The binary search
tree is advantageous because redundant data is consolidated
into a single address, which can be represented as a node in
the binary search tree. The binary search tree information is
flattened into a linked list. Once the binary search tree (with
the edit decision list information) is flattened into the linked
list, the linked list data is stored by the content timeline
editor system 100 using a text-based source code manage-
ment (SCM) system. That is, the edit decision list is con-
verted into the text-based linked list data. While SCM
systems are traditionally used to manage computer program
source code, in the context of this disclosure, the SCM
system used by the content timeline editor system 100 is
used to store the linked list data corresponding to the latest
edit decision list versions. Any SCM system now known or
later developed is intended to be within the scope of this
disclosure and to be protected by the accompanying claims.

Embodiments of the content timeline editor system 100
can quickly compare the text-based linked list data of the
reference edit decision list with the text-based linked list
data of the received updated edit decision list information.
Based on the comparison of the text-based reference linked
list data and the text-based updated linked list data, potential
collisions can be readily identified. That is, a collision can be
identified when one of the filled nodes of the text-based
reference linked list data corresponds to a filled noted of the
text-based update linked list data.

Further, the location of the collision within the edit
decision list can be identified very precisely. Here, if the
updated linked list data indicates that the editorial change to
the edit decision list is made at a null location in the binary
search tree of the linked list data, then the content timeline
editor system 100 determines that there will not be a data
collision when the current reference edit decision list is
updated using the updated edit decision list information.
Alternatively, if the comparison between the text-based
reference linked list data and the text-based updated linked
list data indicates that one of more of the nodes of the binary
search tree is already occupied with data that would other-
wise be changed in a new updated edit decision list, then the
content timeline editor system 100 precisely determines the
location of the potential data collision.

Here, one skilled in the art, after reading and contemplat-
ing the disclosure of this specification, will realize that the
process of comparing the text-based reference linked list
data with the text-based updated linked list data is compu-
tationally more efficient than comparing a reference edit
decision list with an updated edit decision list (or even the
updated edit decision list information).

Furthermore, the SCM system enables call back of pre-
vious versions or merge collisions. The SCM system process
can also be reversed to generate an edit decision list that can
be fed back into the non-linear editor 102.

The disclosed content timeline editor system 100 will
become better understood through review of the following
detailed description in conjunction with the figures. The

10

15

20

25

30

35

40

45

50

55

60

65

6

detailed description and figures provide merely examples of
the various inventions described herein. Those skilled in the
art will understand that the disclosed examples may be
varied, modified, and altered without departing from the
scope of the inventions described herein. Many variations
are contemplated for different applications and design con-
siderations; however, for the sake of brevity, each and every
contemplated variation is not individually described in the
following detailed description.

Throughout the following detailed description, examples
of various content timeline editor systems 100 are provided.
Related features in the examples may be identical, similar, or
dissimilar in different examples. For the sake of brevity,
related features will not be redundantly explained in each
example. Instead, the use of related feature names will cue
the reader that the feature with a related feature name may
be similar to the related feature in an example explained
previously. Features specific to a given example will be
described in that particular example. The reader should
understand that a given feature need not be the same or
similar to the specific portrayal of a related feature in any
given figure or example.

The following definitions apply herein, unless otherwise
indicated.

“Substantially” means to be more-or-less conforming to
the particular dimension, range, shape, concept, or other
aspect modified by the term, such that a feature or compo-
nent need not conform exactly. For example, a “substantially
cylindrical” object means that the object resembles a cylin-
der, but may have one or more deviations from a true
cylinder.

“Comprising,” “including,” and “having” (and conjuga-
tions thereof) are used interchangeably to mean including
but not necessarily limited to, and are open-ended terms not
intended to exclude additional, elements or method steps not
expressly recited.

Terms such as “first”, “second”, and “third” are used to
distinguish or identify various members of a group, or the
like, and are not intended to denote a serial, chronological,
or numerical limitation.

“Coupled” means connected, either permanently or
releasably, whether directly or indirectly through interven-
ing components. “Communicatively coupled” means con-
nected electronically to other devices, whether directly or
indirectly through intervening components, in a manner that
facilitates electronic communication of information and/or
data between devices.

Returning to FIG. 1, computer system 104 comprises a
computer memory (“memory” or memory medium) 106, an
optional display 108, one or more Central Processing Units
(“CPU”) 110, optional Input/Output devices 112 (e.g., key-
board, mouse, CRT or LCD display, etc.), other computer-
readable media 114, and one or more network connections
116. The edit decision list engine 118, the binary search tree
engine 120, the tree flattening engine 122, the collision
monitoring engine 124, the processor 126, the video and
audio content data 128, and the reference edit decision list
(REDL) and linked list data 130 are shown residing in
memory 102. In other embodiments, some portion of the
contents and/or some of (or all of) the components of the
interactive video introduction system 100 may be stored on
and/or transmitted over the other local and/or remote com-
puter-readable media. In some embodiments, the edit deci-
sion list engine 118, the binary search tree engine 120, the
tree flattening engine 122, and/or the collision monitoring
engine 124 may be integrated with each other and/or with
other logic.



US 11,289,126 B2

7

Note that one or more general purpose virtual or physical
computing systems suitably instructed or a special purpose
computing system 104 may be used to implement a content
timeline editor system 100. Further, the content timeline
editor system 100 may be implemented in software, hard-
ware, firmware, or in some combination to achieve the
capabilities described herein. Note that one or more general
purpose or special purpose computing systems/devices com-
municatively coupled together may be used to implement
the described techniques. However, just because it is pos-
sible to implement the content timeline editor system 100 on
a general purpose computing system does not mean that the
techniques themselves or the operations required to imple-
ment the techniques are conventional or well known.

The content timeline editor system 100 may comprise one
or more communicatively coupled server and/or client com-
puting systems, and/or may span distributed locations. In
addition, each block shown may represent one or more such
blocks as appropriate to a specific embodiment and/or may
be combined with other blocks. Moreover, the various
blocks of the content timeline editor system 100 may
physically reside on one or more machines, which use
standard (e.g., TCP/IP) or proprietary interprocess commu-
nication mechanisms to communicate with each other.

The video and audio content clips are stored in the REDL
and linked list data 130 portion of memory 106. The location
of each content clip is known and is preferably identified by
a unique identifying name. The content clips may be option-
ally associated with other supplemental information, such
as, but not limited to, an identifier of the camera or micro-
phone. Data within the content clips are further identified by
a time code or the like. The REDL and linked list data 130
stores the generated current reference edit decision list,
optionally previously generated reference edit decision lists,
and the associated linked list data. In some embodiments,
the reference edit decision lists and/or linked list data may
be stored locally in the memory 106. Alternatively, or
additionally, the information may be stored in other data
repositories 132 that may be local and/or that may be remote
from the computer system 104.

The components of the content timeline editor system 100
preferably execute on one or more CPUs 110 executing the
processor 126 to manage the generation and use of the edit
decision lists, as described herein. Other code or programs
134 and potentially other data repositories, such as data
repository 132, also reside in the memory 106, and prefer-
ably execute on one or more CPUs 110. Of note, one or more
of the components in FIG. 1 may not be present in any
specific implementation. For example, some embodiments
embedded in other software may not provide means for user
input or display.

In an example embodiment, components/modules of the
content timeline editor system 100 are implemented using
standard programming techniques. For example, the content
timeline editor system 100 may be implemented as a
“native” executable running on the CPU 110, along with one
or more static or dynamic libraries. In other embodiments,
the interactive video introduction system 100 may be imple-
mented as instructions processed by a virtual machine. In
general, a range of programming languages known in the art
may be employed for implementing such example embodi-
ments of the interactive video introduction system 100,
including representative implementations of various pro-
gramming language paradigms, including but not limited to,
object-oriented (e.g., Java, C++, C#, Visual Basic.NET,
Smalltalk, and the like), functional (e.g., ML, Lisp, Scheme,
and the like), procedural (e.g., C, Pascal, Ada, Modula, and

10

15

20

25

30

35

40

45

50

55

60

65

8
the like), scripting (e.g., Perl, Ruby, Python, JavaScript,
VBScript, and the like), and declarative (e.g., SQL, Prolog,
and the like).

The embodiments of the content timeline editor system
100 described herein may also use well-known or propri-
etary, synchronous or asynchronous client-server computing
techniques. Also, the various components may be imple-
mented using more monolithic programming techniques, for
example, as an executable running on a single CPU com-
puter system, or alternatively decomposed using a variety of
structuring techniques known in the art, including but not
limited to, multiprogramming, multithreading, client-server,
or peer-to-peer, running on one or more computer systems
each having one or more CPUs. Some embodiments may
execute concurrently and asynchronously and communicate
using message passing techniques. Equivalent synchronous
embodiments are also supported.

Also, the example content timeline editor system 100 may
be implemented in a distributed environment comprising
multiple, even heterogeneous, computer systems and net-
works. Different configurations and locations of programs
and data are contemplated for use with techniques of
described herein. In addition, the interactive video introduc-
tion system 100 may be physical or virtual computing
systems and may reside on the same physical system. Also,
one or more of the modules may themselves be distributed,
pooled or otherwise grouped, such as for load balancing,
reliability or security reasons. A variety of distributed com-
puting techniques are appropriate for implementing the
components of the illustrated embodiments in a distributed
manner including but not limited to TCP/IP sockets, RPC,
RMI, HTTP, Web Services (XML-RPC, JAX-RPC, SOAP,
etc.) and the like. Other variations are possible. Also, other
functionality could be provided by each component/module,
or existing functionality could be distributed amongst the
components/modules in different ways, yet still achieve the
functions of an interactive video introduction system 100.

Furthermore, in some embodiments, some or all of the
components of the content timeline editor system 100 may
be implemented or provided in other manners, such as at
least partially in firmware and/or hardware, including, but
not limited to one or more application-specific integrated
circuits (ASICs), standard integrated circuits, controllers
executing appropriate instructions, and including microcon-
trollers and/or embedded controllers, field-programmable
gate arrays (FPGAs), complex programmable logic devices
(CPLDs), and the like that are communicatively coupled
and/or controllably coupled with each other. Some or all of
the system components and/or data structures may also be
stored as contents (e.g., as executable or other machine-
readable software instructions or structured data) on a com-
puter-readable medium (e.g., a hard disk; memory; network;
other computer-readable medium; or other portable media
article to be read by an appropriate drive or via an appro-
priate connection, such as a DVD or flash memory device)
to enable the computer-readable medium to execute or
otherwise use or provide the contents to perform at least
some of the described techniques. Some or all of the
components and/or data structures may be stored on tan-
gible, non-transitory storage mediums. Some or all of the
system components and data structures may also be stored as
data signals (e.g., by being encoded as part of a carrier wave
or included as part of an analog or digital propagated signal)
on a variety of computer-readable transmission mediums,
which are then transmitted, including across wireless-based
and wired/cable-based mediums, and may take a variety of
forms (e.g., as part of a single or multiplexed analog signal,



US 11,289,126 B2

9

or as multiple discrete digital packets or frames). Accord-
ingly, embodiments of the interactive video introduction
system 100 may be practiced with other computer system
configurations.

In practice, the content editor who is operating the com-
puter system 104, executing the edit decision list engine 118,
may operate the content timeline editor system 100 to
retrieve and then present on the display 108 a portion of, or
all of, the media content in accordance with the current
reference edit decision list, earlier generated reference edit
decision lists, and/or updated edit decision list information
provided by a remotely located non-linear editor 102. After
review of edits to the reference edit decision list provided by
one or more of the non-linear editors 102, the content editor
may conclude that the proposed new edits are satisfactory.
Assuming any identified collisions have been resolved, the
content editor may operate the computer 104 to generate a
new reference edit decision list which is then stored into the
REDL and linked list data 130 or into another suitable
memory medium. The content editor may control operation
of the computer 104 using the various input/output (1/O)
devices 112.

The content timeline editor system 100, the non-linear
editors 102, and other client computing systems 136 are
communicatively coupled together via a communication
network 138. The communication network 138 is illustrated
as a generic communication system. In one embodiment, the
communication network 138 comprises the Internet.
Accordingly, the computer 104, the non-linear editors 102,
and/or client computing systems 136 have a suitable modem
or Internet connection device, generically represented as the
network connections 116. Alternatively, the communication
network 138 may be a telephony system, a radio frequency
(RF) wireless system, a microwave communication system,
a fiber optics system, an intranet system, a local access
network (LAN) system, an Ethernet system, a cable system,
a radio frequency system, a cellular system, an infrared
system, a satellite system, or a hybrid system comprised of
multiple types of communication media. Additionally,
embodiments of the content timeline editor system 100 may
be implemented on other types of communication technolo-
gies, such as but not limited to, digital subscriber loop
(DSL), X.25, Internet Protocol (IP), Ethernet, Integrated
Services Digital Network (ISDN) and asynchronous transfer
mode (ATM). Also, embodiments of the content timeline
editor system 100 may be employed on combination systems
having a plurality of segments which employ different
formats for each segment employing different technologies
on each segment.

The content timeline editor system 100 divides a working
edit decision list into the following parts: a sample, an event,
and a sample stream. FIG. 2 conceptually illustrates an
example edit decision list 202 (interchangeably referred to
herein as a time line). The timeline 202 includes at least one
track 204. For example, track 204 may be a video track.
Typically, the timeline 202 comprises a plurality of tracks
204, such as video and audio tracks. Within a track are a
plurality of clips 206. Each clip 206 contains content infor-
mation over a time span in the timeline 202. Clips 206 may
be video clips or audio clips. One skilled in the art appre-
ciates that the completed media content event comprises a
continuous sequence of time ordered video clips and audio
clips that presents a thematic story line.

FIG. 3 conceptually illustrates a plurality of samples 302
in an example sample stream 304. Some samples 302 are
empty. Other samples 302 are filled with edit decision list
information (pointer information that identifies a selected

10

15

20

25

30

35

40

45

50

55

60

65

10

event that is a portion of stored content, such as portions of
video clips and/or audio clips) for a single track.

A sample 202 spans a discrete moment in time for a
defined period of time (duration). Each sample is associated
with the discrete time in the content timeline 202 (FIG. 2).
The data of the reference edit decision list (and any other
edit decision list) are also associated with a time in the
content time line. When data in the reference edit decision
list corresponds to a time of a sample, the pointer informa-
tion from the edit decision list is copied into that sample. It
is the smallest unit in the content timeline 202.

Each sample 302 points to a single event that is associated
with that sample. An event is an immutable set of attributes.
A sample stream 304 is a sequence of samples, ordered
chronologically editorial content timeline assets are broken
down into unique events. The event duration is expressed by
a sequence of a plurality of samples 302 (each associated
with same content clip), which are inserted into a sample
stream 304. If a content timeline 202 has multiple tracks, a
distinct sample stream 304 is created for each track.

The content timeline editor system 100 divides the entire
content timeline 202 into the smallest unit of time (duration),
referred herein as the sample 302. Edit decision list changes,
collisions, branches and merges all operate on the sample
level. However, sample-level precision is not trivial. The
internal time base (or sample rate) for modern non-linear
editor projects is often 48 kilohertz (48,000 samples a
second) or higher.

Simply filling a sample stream 304 with 48,000 samples
302 per second is impracticable. To solve this problem, the
data stored in a sample is a pointer or the like, interchange-
ably referred to herein as pointer information, that indicates
location of the stored video data or audio data in memory.
The stored pointer also includes an associated time code. For
example, the video data for each video frame in a video clip
will have an associated time code, typically corresponding
to a time that the frame was acquired by a camera or other
image capture device. In some embodiments, the video or
audio clip memory location may be identifiable by a file
name that has been specified by the content editor. The
non-linear editor 102 is the device that stores the pointer
information or data into a particular sample based on a
specification provided by the content editor.

FIG. 4 conceptually illustrates an example binary search
tree. The content timeline editor system 100, executing the
binary search tree engine 120, processes the current refer-
ence edit decision list into a binary search tree 402 to mark
relatively large sections of the sample stream 302 (sequence
of samples) as part of an event.

Each sample corresponds to a lowest node in the binary
search tree 202. A node is empty (null) if no content data
(video and/or audio data) has been specified for that place in
the content timeline. If content data has been specified by a
content editor using their non-linear editor 102, then data is
complete for that node. Higher nodes in the binary search
tree will be complete if the span of time associated with that
node has content data. In the simplified conceptual example
illustrated in FIG. 4, the nodes 1, 2-3, and 4-7 are all
complete. That is, for the periods of time in the content
timeline associated with the nodes 1, 2-3, and 4-7, the
content editor has specified the content clips, or portions
thereof, that are to be used in the media content stream.
Other portions of the content time line, in accordance with
the reference edit decision list, do not have specified content.

FIG. 5 conceptually illustrates an example linked list data
502 (interchangeably referred to as an array 502) that is
generated by flattening the binary search tree 402. Here, the



US 11,289,126 B2

11

content timeline editor system 100, executing the binary
search tree flattening engine 122, flattens the binary search
tree that has been generated using the reference edit decision
list to generate the linked list data 502. Any suitable binary
search tree flattening algorithm now known or later devel-
oped is intended to be included within the scope of this
disclosure and to be protected by the accompanying claims.

FIG. 6 conceptually illustrates an example plurality of
text-based computer files 602 (interchangeably referred to
herein as text-based reference linked list data) generated
from linked list data 502 by the content timeline editor
system 100. The linked list data 502 is converted into a
text-based list of small computer files 602 by the executing
the binary search tree flattening engine 122. That is, the
text-based reference linked list data 602 is generated from
the linked list data 502.

Once the edit decision list 202 has been reduced into a
series of small computer files 602, they can be applied to any
file/text-based version control system by the content time-
line editor system 100 and stored in the REDL and linked list
data 130 or another suitable memory medium. These text-
based files 602 may be used to quickly detect changes,
versioning, branching, merging, and managing merge con-
flicts using embodiments of the content timeline editor
system 100.

Further, the edit decision list change events are content-
addressable. Accordingly, the memory address location of
the individual events may be derived from the content
(attributes) of the text-based files 602. If an attribute
changes, the address changes, essentially making a new
event, the change to the corresponding file 602 can be
detected. In this way, edit decision list change events are
immutable.

Embodiments of the content timeline editor system 100
provide several unexpected advantages to the process of
conventional editing of an edit decision list. Embodiments
support simultaneous edit decision list edits. Here, an unlim-
ited number of content editors can make concurrent changes
to the same edit decision list at the same time. Any change
to the edit decision list results in a new version of the
reference edit decision list maintained by the content time-
line editor system 100. All historical versions of edit deci-
sion lists are saved and can be quickly accessed by any of the
content editors. Embodiments of the content timeline editor
system 100 support unlimited timeline branching and merg-
ing. That is, the edit decision lists can be quickly branched.
Changes between branches of a binary search tree 402 can
be merged. Embodiments of the content timeline editor
system 100 are fast and efficient. Here, timeline versioning
and branching can be quickly done with little computation.
Preferably, edit decision list versions are stored as deltas, so
only the changed portions of the edit decision list are stored
for each version. And, the content timeline editor system 100
is application independent. That is, the content timeline
information is stored in a way that permits any non-linear
editor 102 to understand the reference edit decision list in
entirety. Any application can read and modify the reference
edit decision list independently.

It should be emphasized that the above-described embodi-
ments of the content timeline editor system 100 are merely
possible examples of implementations of the invention.
Many variations and modifications may be made to the
above-described embodiments. All such modifications and
variations are intended to be included herein within the
scope of this disclosure and protected by the following
claims.

10

15

20

25

30

35

40

45

50

55

60

65

12

Furthermore, the disclosure above encompasses multiple
distinct inventions with independent utility. While each of
these inventions has been disclosed in a particular form, the
specific embodiments disclosed and illustrated above are not
to be considered in a limiting sense as numerous variations
are possible. The subject matter of the inventions includes
all novel and non-obvious combinations and subcombina-
tions of the various elements, features, functions and/or
properties disclosed above and inherent to those skilled in
the art pertaining to such inventions. Where the disclosure or
subsequently filed claims recite “a” element, “a first” ele-
ment, or any such equivalent term, the disclosure or claims
should be understood to incorporate one or more such
elements, neither requiring nor excluding two or more such
elements.

Applicant(s) reserves the right to submit claims directed
to combinations and subcombinations of the disclosed
inventions that are believed to be novel and non-obvious.
Inventions embodied in other combinations and subcombi-
nations of features, functions, elements and/or properties
may be claimed through amendment of those claims or
presentation of new claims in the present application or in a
related application. Such amended or new claims, whether
they are directed to the same invention or a different
invention and whether they are different, broader, narrower,
or equal in scope to the original claims, are to be considered
within the subject matter of the inventions described herein.

Therefore, having thus described the invention, at least
the following is claimed:
1. A method of managing change to a non-linear editing
process, comprising:
accessing a stored reference edit decision list from a
memory medium,
wherein the reference edit decision list corresponds to
a content timeline associated with the accessed ref-
erence edit decision list,
wherein the content timeline is defined by a chrono-
logically ordered sequence of a plurality of filled
samples or a plurality of null samples in a sample
stream,
wherein each sample spans a discrete duration and is
associated with a discrete time in the content time-
line,
wherein a null sample of the plurality of null samples
is empty, and
wherein a filled sample of the plurality of filled samples
stores pointer data that identifies a location of an
event in the memory medium;
generating a binary search tree using the reference edit
decision list,
wherein a null node of the binary search tree corre-
sponds to one of the plurality of null samples, and
wherein a filled node of the binary search tree corre-
sponds to one of the plurality of filled samples;
flattening the binary search tree to generate a linked list
that contains linked list data; and
generating text-based reference linked list data from the
linked list data.
2. The method of claim 1, wherein a predefined plurality
of sequential samples define an event duration for the event.
3. The method of claim 1, further comprising:
storing the text-based reference linked list data in the
memory medium.
4. The method of claim 3, further comprising:
receiving text-based updated linked list data from a
remotely located non-linear editor;



US 11,289,126 B2

13

comparing the text-based reference linked list data with

the text-based updated linked list data;

identifying a collision when one of the filled nodes of the

text-based updated linked list data corresponds to a
filled node of the text-based reference linked list data;
and

determining that no collision has occurred when all filled

nodes of the text-based updated linked list data corre-
spond to the null nodes of the text-based reference
linked list data.

5. The method of claim 4, wherein in response to iden-
tifying the collision, the method further comprising:

generating a collision report that indicates the detection of

the collision,

wherein the collision report indicates a precise time of the

collision in the time line.

6. The method of claim 4, further comprising:

storing the text-based updated linked list data in the

memory medium with associated supplemental infor-
mation that identifies an attribute of the updated linked
list data.

7. The method of claim 6, wherein the attribute of the
supplemental information identifies a time that the updated
linked list data was generated at the non-linear editor.

8. The method of claim 6, wherein the attribute of the
supplemental information identifies a name of the content
editor who generated the updated linked list data.

9. The method of claim 6, further comprising:

generating a new reference edit decision list by combining

the updated edit decision list information into the
reference edit decision list in response to determining
that no collision has occurred; and

storing the new reference edit decision list as a current

reference edit decision list.

10. The method of claim 9, further comprising:

generating a new reference binary search tree using the

new reference edit decision list,

wherein a null node of the new binary search tree
corresponds to one of the plurality of null samples,
and

wherein a filled node of the new binary search tree
corresponds to one of the plurality of filled samples;

flattening the new binary search tree to generate a new

linked list that contains the updated linked list data and

the reference edit decision list data;

generating new text-based reference linked list data from

the new linked list data; and

storing the new text-based reference linked list data in the

memory medium.

11. The method of claim 10, further comprising:

communicating one of the new updated linked list data or

the new text-based reference linked list data to the
non-linear editor.

12. The method of claim 3, further comprising:

receiving updated linked list data from a remotely located

non-linear editor;

generating an updated binary search tree using the

received updated linked list data,

wherein a null node of the updated binary search tree
corresponds to one of the plurality of null samples,
and

10

15

20

25

30

40

45

50

55

60

14

wherein a filled node of the updated binary search tree
corresponds to one of the plurality of filled samples;
flattening the updated binary search tree to generate an
updated linked list that contains updated linked list
data; and

generating text-based updated linked list data from the

updated linked list data.

13. The method of claim 12, further comprising:

comparing the text-based reference linked list data with

the text-based updated linked list data;

identifying a collision when one of the filled nodes of the

text-based updated linked list data corresponds to a
filled node of the text-based reference linked list data;
and

determining that no collision has occurred when all filled

nodes of the text-based updated linked list data corre-
sponds to the null nodes of the text-based reference
linked list data.

14. The method of claim 13, further comprising:

generating a collision report that indicates the detection of

the collision,

wherein the collision report indicates a precise time of the

collision in the time line.

15. The method of claim 12, further comprising:

storing the text-based updated linked list data in the

memory medium with associated supplemental infor-
mation that identifies an attribute of the updated linked
list data.

16. The method of claim 15, wherein the attribute of the
supplemental information identifies a time that the updated
linked list data was generated at the non-linear editor.

17. The method of claim 15, wherein the attribute of the
supplemental information identifies a name of the content
editor who generated the updated linked list data.

18. The method of claim 15, further comprising:

generating a new reference edit decision list by combining

the updated edit decision list information into the
reference edit decision list in response to determining
that no collision has occurred; and

storing the new reference edit decision list as a current

reference edit decision list.

19. The method of claim 18, further comprising:

generating a new reference binary search tree using the

new reference edit decision list,

wherein a null node of the new binary search tree
corresponds to one of the plurality of null samples,
and

wherein a filled node of the new binary search tree
corresponds to one of the plurality of filled samples;

flattening the new binary search tree to generate a new

linked list that contains the updated linked list data and

the reference edit decision list data;

generating new text-based reference linked list data from

the new linked list data; and

storing the new text-based reference linked list data in the

memory medium.

20. The method of claim 19, further comprising:

communicating one of the new updated linked list data or

the new text-based reference linked list data to the
non-linear editor.

#* #* #* #* #*



